
Package: opusreader2 (via r-universe)
September 12, 2024

Title Read Spectroscopic Data from Bruker OPUS Binary Files

Version 0.6.3

Description Read data from OPUS binary files of Fourier-Transform
infrared spectrometers of the company Bruker Optics GmbH & Co.

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

URL https://github.com/spectral-cockpit/opusreader2

BugReports https://github.com/spectral-cockpit/opusreader2/issues

Suggests knitr, rmarkdown, testthat (>= 3.0.0), future.apply, future,
progressr

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation no

Repository https://spectral-cockpit.r-universe.dev

RemoteUrl https://github.com/spectral-cockpit/opusreader2

RemoteRef HEAD

RemoteSha e846540049149ca440f87c944251bd7c84421d0d

Contents
opus_file . 2
read_opus . 2
read_opus_single . 5

Index 6

1

https://github.com/spectral-cockpit/opusreader2
https://github.com/spectral-cockpit/opusreader2/issues

2 read_opus

opus_file Get location of a sample OPUS file

Description

Utility function that retrieves the location of the sample OPUS binary file on disk.

Usage

opus_file()

Value

a character vector storing the location of the sample OPUS file

Examples

fn <- opus_file()
fn

read_opus Read OPUS binary files produced by a Bruker spectrometer

Description

This function can be used to read and parse OPUS files, to make it usable for other processing steps.

Usage

read_opus(dsn, data_only = FALSE, parallel = FALSE, progress_bar = FALSE)

Arguments

dsn data source name. Can be a path to a specific file or a path to a directory. The
listing of the files in a directory is recursive.

data_only read data and parameters with FALSE per default, or only read data NULL, which
only returns the parsed data as an in-memory R object.

parallel read files in parallel via chunking. Default is FALSE.

progress_bar print a progress bar. Default is FALSE.

read_opus 3

Value

Nested list (S3 object) containing the parsed contents of the binary encoded blocks of an OPUS
file. The first level names of the list correspond to the display names as shown in the Bruker OPUS
viewer software. However, in snake_case and more standardized naming to allow for better out-
put handling. Each parsed block element is a sublist containing a) the binary read instructions de-
coded/derived from the header ($block_type, $channel_type, $text_type and $additional_type,
$offset (bytes), $next_offset (bytes), $chunk_size (bytes)); b) if parameter block, nested list
of specific parameters under $parameters, which has elements named according to capitalized
Bruker-internal "three-letter-string" definitions (e.g., "DPF := Data Point Format"). Possible first-
level block names and information provided include:

• refl_no_atm_comp_data_param : class "parameter" (viewer: "Data Parameters Refl". Pa-
rameter list with metadata for refl data block (refl).

• refl_no_atm_comp: class "data" (spectrum; viewer: "Refl"). Unprocessed (raw; i.e, not
atmospherically compensated) reflectance spectra (:= sc_sample / sc_ref). Note that this
element is the untreated spectra before an eventual "atmospheric compensation" routine is
applied.

• refl_data_param : class "parameter" (viewer: "Data Parameters Refl"). Parameter list with
metadata for refl data block (metadata of reflectance spectrum; see refl output). Note that
this element only results if "atmospheric compensation" was activated in the OPUS measure-
ment settings.

• refl: class "data" (spectrum; viewer: "Refl"). Atmospherically compensated reflectance
spectra (:= sc_sample_corr / sc_ref_corr). This result spectrum only exists if either
correction of CO2 and/or water vapour bands is set in OPUS setting (proprietary algorithm;
could possibly be reverse engineered). If refl exists, it has always a corresponding untreated
refl_no_atm_comp spectrum (the latter present in file but not shown in the OPUS viewer,
where only (final) ab is displayed)

• quant_report_refl: class "parameter" (viewer: "Quant Report Refl"). Quantification re-
port for tools of multivariate calibration on refl data (i.e., PLS regression) offered in the
QUANT2 OPUS package. Nested list with Bruker-internal "three-letter-string" definitions.
"TIT" is the title of a nested quantification table, "E<digit>[2]" stands probably for en-
try, "F<digit>[2]" for field, and "Z<digit>[2]" we do not yet know what it maps to. There
seems more information needed, which we can get by expanding the header parsing algorithm.

• ab_no_atm_comp_data_param : class "parameter" (viewer: "Data Parameters AB"). Param-
eter list with metadata for ab data block (spectrum; see ab output).

• ab_no_atm_comp: class "data" (spectrum; viewer: "Refl"). Unprocessed (raw; i.e, not atmo-
spherically compensated) reflectance spectra (:= sc_sample/ sc_ref).

• ab_data_param : class "parameter" (viewer: "Data Parameters Refl"). Parameter list with
metadata for ab data block (spectrum; see ab). Note that this element only results if "atmo-
spheric compensation" was activated in the OPUS measurement settings.

• ab: class "data" (spectrum; viewer: "AB"). Atmospherically compensated (apparent) ab-
sorbance spectra (:= log10(1 / (sc_sample_corr / sc_ref_corr)). Only exists if either
correction of CO2 and/or water vapour bands is set in OPUS setting (proprietary algorithm;
could possibly be reverse engineered). If AB exists, it has always a corresponding untreated
ab_no_atm_comp spectrum (the latter present in file but not shown in the OPUS viewer, where
only final ab is displayed).

4 read_opus

• quant_report_ab: class "parameter" (viewer: "Quant Report AB"). Quantification report
for tools of multivariate calibration on ab data (i.e., PLS regression) offered in the QUANT2
OPUS package. Nested list with Bruker-internal "three-letter-string" definitions. "TIT" is the
title of a nested quantification table, "E<digit>[2]" stands probably for entry, "F<digit>[2]"
for field, and "Z<digit>[2]" we do not yet know what it maps to. There seems more infor-
mation needed, which we can get by expanding the header parsing algorithm.

• sc_sample_data_param: class "parameter" (metadata; viewer: "Data Parameters ScSm").
Describes the sc_sample data block (see sc_sample).

• sc_sample: class "data" (spectrum). Single channel (sc) spectrum of the sample (y-axis:
intensity).

• ig_sample_data_param: class "parameter" (metadata; viewer: "Data Parameters IgSm").

• ig_sample: class "data" (signal, viewer: "IgSm"). Interferogram of the sample measurement.
Oscillatory signal (x-axis: optical path difference (OPD); y-axis: amplitude of the signal).

• sc_ref_data_param: class "parameter" (metadata; viewer: "Data Parameters ScRf"). De-
scribes the sc_sample data block (see sc_ref).

• sc_ref: class "data" (spectrum; viewer: "Data Parameters IgSm"). Single channel (sc) spec-
trum of the reference (background material: e.g., gold; y-axis: intensity).

• ig_ref_data_param: class "parameter" (metadata; viewer: "Data Parameters IgRf").

• ig_ref: class "data" (spectrum; viewer: "IgRf"). Interferogram of the reference measurement.
(background material: e.g., gold). Oscillatory signal (x-axis: optical path difference (OPD);
y-axis: amplitude of the signal)

• optics: class "parameter (metadata; viewer: "Optic Parameters"). Optic setup and settings
such as "Accessory", "Detector Setting" or "Source Setting".

• optics_ref: class "parameter (metadata; viewer: "Optic Parameters Rf"). Optic setup and
settings specific to reference measurement such as "Accessory", "Detector Setting" or "Source
Setting".

• acquisition_ref: class "parameter" (metadata; viewer: "Acquisition parameters Rf". Set-
tings such as ""Additional Data Treatment", (number) of "Background Scans" or "Result Spec-
trum" (e.g. value "Absorbance").

• fourier_transformation_ref:

• fourier_transformation: class "parameter"

• sample:

• acquisition:

• instrument_ref:

• instrument:

• lab_and_process_param_1:

• lab_and_process_param_2:

• info_block:

• history:

• unknown: if a block-type can not be matched, no parsing is done and an empty list entry is
returned. This gives you a hint that there is a block that can not yet be parsed. You can take
further steps by opening an issue.

read_opus_single 5

Details

read_opus() is the high-level interface to read multiple OPUS files at once from a data source
name (dsn). It optionally supports parallel reads via the future framework. When reading in par-
allel, a progress bar can be enabled, which uses progressr under the hood for progress updates. If
parallel = TRUE, one can specify across how many chunks the OPUS files are distributed onto the
registered parallel workers. This can be done via options(number_of_chunks = <integer>).
The default value is number_of_chunks = "registered workers", which will split the OPUS files
across number of chunks corresponding to the number of registered workers.

read_opus_single Read a single opus file

Description

Read a single opus file

Usage

read_opus_single(dsn, data_only = FALSE)

Arguments

dsn source path of an opus file

data_only read data and parameters with FALSE per default, or only read data

Index

∗ core
read_opus, 2

opus_file, 2

read_opus, 2
read_opus_single, 5

6

	opus_file
	read_opus
	read_opus_single
	Index

